Lösungen zu den Arbeitsblättern

I. Einführung in die Uni-Mathematik

Nr. 1) a)
$$A = \{2, 3, 5, 7, 11, 13, 17, 19\}$$
 b) $B = \{-3, 2\}$ c) $C = \emptyset$

Nr. 2)
$$A = \{1, 2, 3, 4, 6, 12\} = \{x \in \mathbb{N} \mid x \text{ teilt } 12\}$$

 $B = \{\dots, -3, -1, 1, 3, 5, \dots\} = \{x \in \mathbb{Z} \mid x = 2k + 1 \text{ mit } k \in \mathbb{Z}\} = \{2k + 1 \in \mathbb{Z} \mid k \in \mathbb{Z}\}$
 $C = \{6, 7, 8, 9, 10, 11\} = \{x \in \mathbb{N} \mid 5 < x < 12\}$

Nr. 3) Die Teilmengen sind
$$\{\}, \{o\}, \{m\}, \{a\}, \{o, m\}, \{o, a\}, \{m, a\}, \{o, m, a\}.$$

Nr. 4) Es ist
$$A = \{2, 3, 5, 7\}$$
 und $B = \{1, 2, 5, 10\}$. Also gilt $A \cup B = \{1, 2, 3, 5, 7, 10\}$, $A \setminus B = \{3, 7\}$, $\overline{A} = \{1, 4, 6, 8, 9, 10\}$, $A \cap B = \{2, 5\}$.

Nr. 5)
$$[\{4,5,7,9,10,13\} \cap \{1,3,5,7\}] \setminus \{7,13,19\} = \{5,7\} \setminus \{7,13,19\} = \{5\}$$

Nr. 6) a)
$$M_1 \cup (M_1 \cap M_2) = M_1$$
 b) $M_1 \cap (M_1 \cup M_2) = M_1$ c) $\emptyset \setminus M = \emptyset$

Nr. 7) a)
$$A = [3,4)$$
 b) $B = [5,19) \cap [13,27) = [13,19)$ c) $C = [2,44]$ d) $D = \mathbb{R} \setminus (-33,\infty) = (-\infty,-33]$

Nr. 8) a) Die drei aufeinanderfolgenden Zahlen seien: n, n+1, n+2 mit $n \in \mathbb{N}$. Dann lässt sich die Summe folgendermaßen umformen:

$$n + (n+1) + (n+2) = 3n + 3 = 3 \cdot (n+1)$$

und dies ist immer durch 3 teilbar. Damit ist die Behauptung bewiesen.

b) Annahme: Es sei $\frac{a+b}{2} < \sqrt{a \cdot b}$. Folglich, $a+b < 2\sqrt{a \cdot b} \Longrightarrow (a+b)^2 < 4ab$ (da $a,b \ge 0$) $\Longrightarrow a^2 + 2ab + b^2 < 4ab \Longrightarrow a^2 - 2ab + b^2 < 0 \Longrightarrow (a-b)^2 < 0$. Dies ist ein Widerspruch, da eine Quadratzahl nie kleiner als 0 sein kann. Also ist die Annahme falsch und das Gegenteil richtig, d.h. die Behauptung $\frac{a+b}{2} \ge \sqrt{a \cdot b}$ ist richtig.

II. Der Aufbau des Zahlensystems

Nr. 9) a) 13 b)
$$9-6a$$
 c) $-66ab$ d) $11a^2 + 2ab - 8$

Nr. 10) a)
$$2x - 6y$$
 b) $2ab - \frac{17}{4}a$ c) $\frac{21}{4}x^2 - 7yx + \frac{91}{8}y - \frac{3}{8}x^2y + \frac{1}{2}y^2x - \frac{13}{16}y^2$

Nr. 11) a) 99 b)
$$\frac{7}{30}$$
 c) $4b(2a+5b)$ d) $(8-5c)(7a-5b)$

Nr. 12) a)
$$2.7x - 2.5y + 11z$$
 b) $-\frac{701}{450}a$ c) $-5x$ d) $\frac{13}{24}y^2 - \frac{5}{18}y$ e) $-\frac{37}{72}b$ f) $x - 1$ g) $\frac{175a}{32b} + \frac{14b}{a}$

1

Nr. 13) a)
$$\frac{6}{7}$$
 b) $\frac{21b}{11a}$ c) -1 d) $\frac{3u - 4v}{v - 3u}$

Nr. 14) Nur in Teilaufgabe c) herrscht Gleichheit.

Nr. 15) In beiden Gläsern befindet sich am Ende gleichviel des anderen Weines. Bezeichnet a die Weinmenge in einem Glas vor dem Umschütten und b die mit dem Löffel zu entnehmende Weinmenge, so gilt nach Durchführung der Umschüttungen:

Rotwein im Rotweinglas:
$$a-b+\frac{b}{a+b}\cdot b=\frac{a^2}{a+b}$$

Weißwein im Rotweinglas:
$$0 + \frac{a}{a+b} \cdot b = \frac{ab}{a+b}$$

Rotwein im Weißweinglas:
$$0 + b - \frac{b}{a+b} \cdot b = \frac{ab}{a+b}$$

Weißwein im Weißweinglas:
$$a - \frac{a}{a+b} \cdot b = \frac{a^2}{a+b}$$

Nr. 16) a)
$$\frac{1}{10}$$
 b) $\frac{173}{8}$ c) $-\frac{53}{63}$

Nr. 17) a) 60 b)
$$3|a|\sqrt{c}$$
 c) $\frac{25}{8}$ d) 40 e) $2\sqrt{2a+1}$ f) $\sqrt{35}-\sqrt{15}$ g) $\sqrt{2}$

Nr. 18) a)
$$D = [-4, \infty)$$
 b) $D = [0, \infty)$ c) $D = (-\infty, -1]$ d) $D = (-\infty, -1] \cup [1, \infty)$ e) $D = \emptyset$ f) $D = [-1, 1]$

Nr. 19) a)
$$\sqrt{a} - 3\sqrt{b}$$
 b) $\frac{1}{5}$ c) $\sqrt{1+x}$ d) $2a + 10$ e) $-(2\sqrt{x} - \sqrt{y})^2$ f) $|3a-1|$ g) $\frac{4}{\sqrt{1-2x}}$ h) $(a-2)^2$ i) $|a-5|$

Nr. 20)
$$\sqrt{a} + \sqrt{b} \ge \sqrt{a+b} \iff \left(\sqrt{a} + \sqrt{b}\right)^2 \ge \left(\sqrt{a+b}\right)^2 \iff a + 2\sqrt{ab} + b \ge a + b$$

Nr. 21) a)
$$x \neq 0$$
 b) $x \neq 1$ c) $x \neq \pm 1$ d) $x \neq 3$ e) $D = \mathbb{R}$ f) $a \neq \pm 1$

Nr. 22) a)
$$\frac{5}{2}\sqrt{2}$$
 b) $\frac{7}{3}\sqrt{6t}$ c) $\frac{\sqrt{a^2+ab}-\sqrt{ab+b^2}}{a-b}$ d) 0

Nr. 23) a) 12 b)
$$4(a^2 + 1)$$
 c) $24 - 656a$ d) $24 + 656a$

Nr. 24) a)
$$|a|$$
 b) $|x+2|$ c) $M = \{x \in \mathbb{R} \mid |x-10| \le 6\}$ d) $M = \{x \in \mathbb{R} \mid |x-8| < 15\}$

III. Potenzen, Logarithmen und Binomialkoeffizienten

Nr. 25) a)
$$-\frac{1}{10}$$
 b) 1,69 c) $-0,00001$ d) $2 \cdot 10^8$ e) $4 \cdot 10^{-4}$ f) 10^5 g) -64 h) 64 i) $\frac{2}{5}$ j) 4 k) $\frac{1}{2}$ l) 3 m) 1

Nr. 26) a)
$$-x^6$$
 b) x^{-6} c) $-\frac{1}{2}$ d) $2x^2 + 5x$ e) $\frac{p}{(p-q)(u-v)^4}$ f) $\frac{10x^5}{z^5}$ g) $\sqrt[20]{x}$ h) $x^{\frac{11}{16}}$ i) $\frac{1}{2y}$ j) $\frac{a^{n-2}}{by^nx^{n-4}}$

Nr. 27) a) 2 b)
$$-3$$
 c) 0 d) $\frac{14}{15}$ e) $\frac{4}{3}$ f) $-\frac{1}{2}$

$$Nr. \ 28) \ a) > 0 \quad \ b) > 0 \quad \ c) < 0 \quad \ d) < 0 \quad \ e) < 0 \quad \ f) > 0 \quad \ g) \ 0$$

Nr. 29) a)
$$1 + \log_3 x$$
 b) $1 + \log_5 a - \log_5 x$ c) $\frac{1}{2} \lg a + 2 \lg b - \frac{1}{4} \lg c$ d) $10 \lg \left(\sqrt[3]{a} + \sqrt[4]{b} \right) - \lg c$ e) $\frac{2}{5} \lg x + \frac{1}{2} \lg y - \frac{1}{2} \lg u - \frac{1}{4} \lg v$

Nr. 30) a)
$$\lg(u^2v^3)$$
 b) $\lg\frac{(u+v)^3}{\sqrt{u\sqrt[3]{v}}}$ c) $\ln\sqrt[3]{xe^2}$ d) $-\lg(a+1)$ e) 0 f) $-0.5\lg b$ g) $\ln\frac{x^2+1}{x^2}$

Nr. 31) a) 2.5 b) 2.4898961 c) -1.6246966 d) \log_1 ist nicht definiert

Nr. 32)
$$\binom{26}{15} = 7726160$$

Nr. 33)
$$12 \cdot 11 \cdot 10 = 1320$$

Nr. 34)
$$\binom{n}{k} + \binom{n}{k+1} = \frac{n!}{(n-k)!k!} + \frac{n!}{(n-k-1)!(k+1)!}$$

$$= \frac{n!(k+1)}{(n-k)!(k+1)!} + \frac{n!(n-k)}{(n-k)!(k+1)!} = \frac{n!(k+1) + n!(n-k)}{(n-k)!(k+1)!}$$

$$= \frac{n!(k+1+n-k)}{(n-k)!(k+1)!} = \frac{n!(n+1)}{(n-k)!(k+1)!} = \frac{(n+1)!}{(n-k)!(k+1)!}$$

$$= \frac{(n+1)!}{((n+1)-(k+1))!(k+1)!} = \binom{n+1}{k+1}$$

IV. Gleichungen und Ungleichungen

Nr. 35) a)
$$L = \left\{\frac{1}{3}\right\}$$
 b) $L = \left\{\frac{32}{25}\right\}$ c) $L = \mathbb{R}$ d) $L = \left\{-\frac{294}{1675}\right\}$

Nr. 36) a)
$$L = \left\{\frac{1-\sqrt{6}}{5}, \frac{1+\sqrt{6}}{5}\right\}$$
 b) $L = \left\{\frac{3-\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right\}$ c) $L = \emptyset$ d) $L = \left\{0, \frac{8}{7}\right\}$ e) $L = \left\{1\right\}$ f) $L = \left\{-\frac{1}{3}\right\}$

Nr. 37) Für
$$u=9$$
 eine Lösung, da Radikand gleich 0 ist.
Für $u<9$ zwei Lösungen, da Radikand positiv ist.
Für $u>9$ keine Lösung, da Radikand negativ ist.

Nr. 38) Ansatz:
$$(x - (1 + \sqrt{3}))(x - (1 - \sqrt{3})) = 0 \iff x^2 - 2x - 2 = 0$$

Nr. 39) a)
$$D = \mathbb{R} \setminus (-1, 1), L = \{2\}$$
 b) $D = \mathbb{R} \setminus (-1, 1), L = \{-\sqrt{3}, \sqrt{3}\}$ c) $D = \mathbb{R}, L = \{0\}$ d) $D = \left[-\frac{10}{3}, \infty\right), L = \{5\}$

Nr. 40) a)
$$D = \mathbb{R} \setminus \{-1\}$$
, $L = \{0, \frac{5}{2}\}$ b) $D = \mathbb{R} \setminus \{-1, 1\}$, $L = \emptyset$ c) $D = \mathbb{R} \setminus \{2\}$, $L = \{5\}$ (Beachte: $2 \notin D$)

Nr. 41) a)
$$x = -0.5$$
 b) $x = 0.4$ c) $x = \pm \sqrt{32}$ d) $x = \frac{1}{\sqrt[23]{10^{10}}}$ e) $\sqrt[7]{5^5}$

Nr. 42) a)
$$x = 100$$
 b) $x = \sqrt{10}$ c) $x = \sqrt{8}$ d) $x = \sqrt{10}$ e) $x = \frac{\sqrt{10}}{2}$ f) $x = \frac{5}{6}$ g) $x = 5$ h) $x = 16$

Nr. 43) a)
$$x = \frac{\ln 12}{\ln 4} \approx 1,79$$
 b) $x = \frac{1}{\ln 5} \approx 1,43$ c) $x = \frac{\ln 42}{\ln 3} \approx 1,31$ d) $x = 3$ e) $x = -1$ f) $x \le -1$ Nr. 44) a) $L = (-\infty, -\frac{1}{8}]$ b) $L = (-7, \infty)$ c) $L = [1, 4]$ d) $D = \mathbb{R} \setminus \{1\}$ 1. Fall: $x - 1 > 0 \iff x > 1$ $3x + 2 > -3(x - 1)$ $3x + 2 > -3x + 3$ $| +3x - 2|$ $6x > 1$ $| : 6$ $x > \frac{1}{6}$ $L_1 = \{x \in \mathbb{R} \mid x > 1\}$ 2. Fall: $x - 1 < 0 \iff x < 1$ $3x + 2 < -3(x - 1)$ $3x + 2 < -3x + 3$ $| +3x - 2|$ $6x < 1$ $| : 6$ $x < \frac{1}{6}$ $L_2 = \{x \in \mathbb{R} \mid x < \frac{1}{6}\}$ $L = L_1 \cup L_2 = (-\infty, \frac{1}{6}) \cup (1, \infty)$ e) $D = \mathbb{R} \setminus \{5\}$ 1. Fall: $x - 5 > 0 \iff x > 5$ $-x + 3 \le -2(x - 5)$ $-x + 3 \le -2(x - 5)$ $-x + 3 \le -2(x - 5)$ $-x + 3 \ge -2(x - 5)$ $-x + 3$

$$L = L_1 \cup L_2 = L_1 = \left(\frac{1}{2}, \infty\right)$$

g) 1. Fall:
$$x-7 \ge 0 \Longleftrightarrow x \ge 7$$
 d.h. $|x-7| = x-7$
$$x-7 \le 2 \qquad |+7$$

$$x \leq 9$$
 $L_1 = [7, 9]$
2. Fall: $x - 7 < 0 \iff x < 7$ d.h. $|x - 7| = -(x - 7)$
 $-x + 7 \leq 2$ $|-7$
 $-x \leq -5$ $|: (-1)$
 $x \geq 5$ $L_2 = [5, 7)$

$$L = L_1 \cup L_2 = [5, 9]$$

h)
$$L = \emptyset$$
 i) $L = (-\infty, -4.75) \cup (5.25, \infty)$ j) $L = (-\infty, \frac{1}{5}) \cup (9, \infty)$ k) $L = [2, 4]$

1)
$$D = \mathbb{R} \setminus \{-2\}, L = (-2, -\frac{2}{5}] \cup [6, \infty)$$
 m) $D = \mathbb{R} \setminus \{5\}, L = (-\infty, 5) \cup (6, \infty)$

n)
$$D = \mathbb{R} \setminus \{2\}, L = [-1, 5] \setminus \{2\}$$

III. Funktionen

- Nr. 45) Es ist erlaubt, dass bei einer Funktion mehrere x-Werte denselben y-Wert besitzen. Beispielsweise ordnet die Funktionsgleichung f(x) = 4 jedem x-Wert den Wert y = 4 zu. Das Schaubild ist eine zur x-Achse parallele Gerade.
- Nr. 46) Die Zuordnung $x \to y$ stellt eine Funktion dar, da zu jedem Gewicht x genau ein Preis y gehört.

Eine geschlossene Darstellung für diese Zuordnung gibt es nicht. Man kann die Funktion aber abschnittsweise angeben:

$$y = \begin{cases} 1.5x, & 0 \le x < 3 \\ x, & x \ge 3 \end{cases}$$

- Nr. 47) a) Die unabhängige Variable ist die Körpergröße G, die abhängige Variable das Idealgewicht I. Der Funktionsterm lautet $I(G) = (G 100) \cdot 0,9 = 0,9 \cdot G 90$ (G in cm, I in kg). Diese Regel ist nur sinnvoll für Personen, die um einiges größer sind als 100 cm, da z.B. zu 100 cm das Idealgewicht I = 0 kg gehören würde.
 - b) Die unabhängige Variable ist die Zeit t, die abhängige Variable der Alkoholspiegel s (t in Stunden, s in Promille). Der Funktionsterm lautet: $s(t) = 1, 2 0, 15 \cdot t$.
- Nr. 48) Geraden, die parallel zur x-Achse sind, besitzen die Gleichung y = b, d.h. die Steigung m = 0.

Geraden, die parallel zur y-Achse sind, besitzen die Steigung $m = \infty$ und können nicht in der Form y = mx + b dargestellt werden; ihre Gleichungen besitzen die Form x = a.

- Nr. 49) a) Die Gerade g schneidet die x-Achse bei x=7, die y-Achse bei y=4.
 - b) Allgemeine Regel: Eine Gerade in der Form $\frac{x}{a} + \frac{y}{b} = 1$ schneidet die x-Achse bei x = a und die y-Achse bei y = b. Die umgeformte Geradengleichung heißt Achsenabschnittsform. (Beweis: Einsetzen von x = 0 bzw. y = 0.)

Nr. 50) a)
$$y = \frac{1}{3}x + \frac{85}{99}$$
 b) $y = -\frac{1}{2}x + \frac{5}{2}$ c) $y = \frac{5}{6}x$

Nr. 51) a)
$$y = -\frac{1}{3}x + \frac{7}{3}$$
 b) $y = -\frac{105}{16}x + \frac{27}{4}$

- Nr. 52) Schnittpunkt von f und g ist der Punkt $S\left(\frac{160}{23}, \frac{18}{23}\right)$.
- Nr. 53) a) S(3,2)
 - b) Es gibt keinen Schnittpunkt, da $g_1 \parallel g_2$.
 - c) Da $g_1 = g_2$, gibt es unendlich viele Schnittpunkte.

Allgemein: Zwei Geraden $g_1: y = m_1x + b_1$ und $g_2: y = m_2x + b_2$ besitzen keinen Schnittpunkt, wenn sie parallel sind, d.h. wenn sie gleiche Steigungen haben $(m_1 = m_2)$, aber verschiedene y-Achsenabschnitte $(b_1 \neq b_2)$ besitzen.

Nr. 54) a) Die Geraden schneiden sich unter dem Winkel 90°.

Allgemein: Zwei Geraden schneiden sich unter dem Winkel 90°, wenn für ihre beiden Steigungen m_1 und m_2 gilt: $m_1 \cdot m_2 = -1$.

- b) $g_3: y = 2x + 1$
- c) $g_2: y = -\frac{8}{5}x \frac{39}{5}$, der Schnittpunkt von g_1 und g_2 ist der Punkt $S\left(-\frac{432}{89}, -\frac{3}{89}\right)$.

Quadratische Funktionen

- Nr. 55) Zeichnet man das Schaubild der Funktion $x \to -\frac{1}{3}x^2 + x + 2$, so erhält man eine nach unten geöffnete Parabel mit dem Scheitel $S\left(\frac{3}{2},\frac{11}{4}\right)$, d.h. der Term nimmt für $x=\frac{3}{2}$ den größten Wert an. Einen kleinsten Wert gibt es nicht, da die Parabel nach unten geöffnet ist.
- Nr. 56) $y = 2(x+2)^2 3 = 2x^2 + 8x + 5$, $y = \frac{1}{2}(x-1)^2 + \frac{3}{2} = \frac{1}{2}x^2 x + 2$, $y = -\frac{1}{4}(x-3)^2 + 1 = -\frac{1}{4}x^2 + \frac{3}{2}x \frac{5}{4}$
- Nr. 57) a) $S\left(\frac{1}{2},-2\right)$, $N_{1,2}\left(\frac{1}{2}\pm\sqrt{2},0\right)$, Verschiebung von $y=x^2$ um $\frac{1}{2}$ in x- und um -2 in y-Richtung.
 - b) S(1,-2), keine Nullstellen, Spiegelung von $y=x^2$ an der x-Achse und Verschiebung um 1 in x-Richtung und -2 in y-Richtung.
 - c) $S\left(\frac{1}{3}, \frac{5}{6}\right)$, keine Nullstellen, Streckung von $y = x^2$ mit dem Faktor $\frac{3}{2}$ und Verschiebung um $\frac{1}{3}$ in x- und um $\frac{5}{6}$ in y-Richtung.
 - d) $S\left(3,\frac{15}{2}\right)$, $N_{1,2}\left(3\pm\sqrt{15},0\right)$, Stauchung von $y=x^2$ mit dem Faktor $\frac{1}{2}$, Spiegelung an der x-Achse und Verschiebung um 3 in x- und um $\frac{15}{2}$ in y-Richtung.

An der Lage des Scheitels (y-Wert) und dem Faktor a vor dem x^2 -Glied kann man erkennen, ob Nullstellen existieren: In Teilaufgabe b) liegt beispielsweise S unterhalb der x-Achse, während a=-1<0 ist (die Parabel ist also nach unten geöffnet). Folgerung: Es gibt keine Nullstellen.

- Nr. 58) a) $f(x) = 2x^2 12x + 21$, keine Nullstellenform
 - b) $f(x) = -3x^2 + 30x 68 = (-3)\left(x 5 + \frac{1}{3}\sqrt{21}\right)\left(x 5 \frac{1}{3}\sqrt{21}\right)$
 - c) $f(x) = 9x^2 + 72x + 142 = 9\left(x + 4 \frac{1}{3}\sqrt{2}\right)\left(x + 4 + \frac{1}{3}\sqrt{2}\right)$
 - d) $f(x) = -11x^2 55x 35{,}75 = (-11)\left(x + \frac{5}{2} \sqrt{3}\right)\left(x + \frac{5}{2} + \sqrt{3}\right)$
- Nr. 59) a) $S_1(3,1)$, $S_2\left(6,\frac{5}{2}\right)$
 - b) Keinen Schnittpunkt mit g hat z.B. die Gerade y=4. Genau einen Schnittpunkt mit g hat die Gerade y=3, sie berührt die Parabel im Scheitel.

- Nr. 60) a) $S_1(1,1)$, $S_2\left(\frac{19}{3}, -\frac{23}{9}\right)$
 - b) Zwei Parabeln können 0, 1 oder 2 Schnittpunkte besitzen vorausgesetzt die Parabeln sind nicht identisch.
- Nr. 61) Da eine Parabel die allgemeine Form $y = ax^2 + bx + c$ mit den 3 Parametern a, b, c besitzt, ist eine Parabel durch die Angabe von 3 Punkten eindeutig bestimmt. Durch die zwei Punkte (0,0) und (1,1) geht z.B. außer der Normalparabel $y = x^2$ auch noch die Parabel $y = -(x-1)^2 + 1$, die ihren Scheitel im Punkt (1,1) hat.
- Nr. 62) Die Schnittpunkte der zwei Schaubilder von K und U sind gerade die Stellen, an denen Umsatz und Produktionskosten gleich groß sind. Setzt man U(x) = K(x) und löst man nach x auf, so erhält man: $x_1 = 2, x_2 = 8$. Die Firma macht dann Gewinn, wenn der Umsatz U größer ist als die Kosten K, d.h. dort, wo das Schaubild von U oberhalb von dem von K verläuft, also für 2 < x < 8.
- Nr. 63) a) Der erste Summand $\left(\frac{v}{10}\right)^2$ stellt den Bremsweg dar, der zweite $\frac{v}{3,6}$ den Reaktionsweg, den das Auto während der Reaktionszeit des Fahrers von 1 s zurücklegt.
 - b) Beachten Sie beim Zeichnen, dass der Scheitel der Parabel nicht im Ursprung (0,0) des Koordinatensystems liegt, sondern bei S(-13,9,-1,9).

c)					
- /	v in km/h	30	50	100	180
	S in m	17,3	38,9	127,8	374

Ganz- und gebrochenrationale Funktionen

- Nr. 64) Aus $f(x): (x-x_1) = g(x)$ folgt $f(x) = (x-x_1) \cdot g(x)$. Ist nun x_2 eine Nullstelle von g, so gilt $f(x_2) = (x_2 x_1) \cdot g(x_2) = (x_2 x_1) \cdot 0 = 0$. Damit ist x_2 auch Nullstelle von f.
- Nr. 65) a) $x_1=1,\ x_2=-2,\ x_3=-3$ b) $t_1=0,\ t_2=0,2,\ t_3=0,8$ c) $x_1=2$ (Die durch Polynomdivision entstehende quadratische Gleichung hat keine weiteren Lösungen.)
- Nr. 66) a) $(6x^3 + 5x^2 3x + 1) : (3x 2) = 2x^2 + 3x + 1 + \frac{3}{3x 2}$ b) $(a^3 - 2ab + b^3) : (a + b) = a^2 - ab + b^2 - 2b + \frac{2b^2}{a + b} = a^2 - ab + b^2 - \frac{2ab}{a + b}$
- Nr. 67) a) $S_1(1,-5)$, $S_2(2,-16)$, $S_3(3,-27)$ b) $S_1(0,10)$, $S_2(-1,5)$, $S_3(2,20)$
- Nr. 68) a) $x_1 = 1$, $x_2 = 2$ b) x = 1

d) $z_1 = 1$, $z_2 = -1$

Nr. 69) a) Nullstellen des Zählers: $x_{1,2}=0$, $x_3=4$, $x_4=-1$. Nullstellen des Nenners: $x_5=-2$, $x_6=-3$. Nullstellen der Funktion f(x) bei $x_{1,2}=0$, $x_3=4$, $x_4=-1$; Polstellen bei $x_5=-2$ und $x_6=-3$; keine hebbaren Definitionslücken. Für $|x|\to\infty$ verhält sich f(x) wie $x^2-8x+30$. (Polynomdivision!)

- b) Nullstelle der Funktion f(x) bei $x_2 = 0$; Polstellen bei $x_4 = -2$ und $x_5 = 3$; hebbare Definitionslücke bei $x_{1,3} = 1$. Für $|x| \to \infty$ gilt $f(x) \to 0$.
- c) Nullstellen der Funktion f(x) bei $x_1 = 0$, $x_2 = -2$, $x_3 = 2$; keine Polstellen; keine Definitionslücken. Für $|x| \to \infty$ hat f(x) die schiefe Asymptote x. (Polynomdivision!)

Nr. 70) a)
$$x_{1,2} = 1 \pm \sqrt{3}$$
, $y_{1,2} = \frac{1}{1 \pm \sqrt{3}} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}$
b) $x_1 = -1$, $y_1 = -1$; $x_{2,3} = \frac{7}{2} \pm \frac{\sqrt{33}}{2}$, $y_{2,3} = \frac{7}{8} \mp \frac{\sqrt{33}}{8}$

- Nr. 71) Erklärung s. Nr. 62). Setzt man U(x) = K(x) und rät man die Schnittstelle $x_1 = 20$, so erhält man durch Polynomdivision $x_{2,3} = 20 \pm \sqrt{520}$. Es gilt $x_2 = 20 + \sqrt{520} \approx 42,80$, $x_3 < 0$. Die Firma produziert also mit Gewinn für 20 < x < 42,80.
- Nr. 72) Eigenschaften s. Schaubilder! b) A = 1, B = -1

Exponentialfunktionen

Nr. 73) a)

\boldsymbol{x}	-2	-1,5	-1	-0,5	0	0,5	1	1,5	2	2,5	3
f(x)	$\frac{1}{9}$	$\frac{1}{3\sqrt{3}}$	$\frac{1}{3}$	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	3	$3\sqrt{3}$	9	$9\sqrt{3}$	27
g(x)	$\frac{1}{81}$	$\frac{1}{27\sqrt{3}}$	$\frac{1}{27}$	$\frac{1}{9\sqrt{3}}$	$\frac{1}{9}$	$\frac{1}{3\sqrt{3}}$	$\frac{1}{3}$	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	3

- b) Wegen $g(x) = \frac{1}{9} \cdot 3^x = 3^{-2} \cdot 3^x = 3^{x-2}$ kann man sich das Schaubild von g aus dem von $f(x) = 3^x$ auch durch Verschiebung in x-Richtung um 2 entstanden denken.
- Nr. 74) Eigenschaften des Schaubilds von f:
 - Für $x \to \infty$ gilt $f \to 0$ (da $2^x \to \infty$), für $x \to -\infty$ gilt $f \to 4$ (da $2^x \to 0$).
 - Wertebereich W = (0, 4).
 - Da das Schaubild punktsymmetrisch zum Punkt (0,2) ist, erhält man den Wert f(-x) aus dem Funktionswert f(x) mittels der Gleichung f(-x) = 4 f(x). Beispiel: f(-3) = 2 + (2 f(3)) = 4 f(3).
- Nr. 75) $f(x) = \frac{3}{2} \cdot \left(\sqrt{2}\right)^x = \frac{3}{2} \cdot 2^{\frac{1}{2}x}$. Die Funktion f nimmt den Wert 3 an der Stelle x = 2.
- Nr. 76) $x = \frac{\ln 24}{\ln 6} \approx 1,77, y \approx 1,75$
- Nr. 77) a) $f(t) = 80 \cdot \left(\sqrt[3]{\frac{1}{2}}\right)^t = 80 \cdot 2^{-t/3}$ b) $f(6) = 20, f(9) = 10, f(20) \approx 0.8$
 - c) f(t) = 25 bei $t \approx 5.0$ (min). d) Außentemperatur $0^{\circ}C$, da $f(t) \to 0$ für $t \to \infty$.
 - e) Verwendung der Potenzgesetze liefert: $\left(\sqrt[3]{\frac{1}{2}}\right)^t = \left(\left(\frac{1}{2}\right)^{1/3}\right)^t = \left(\frac{1}{2}\right)^{t/3}$.
- Nr. 78) a) $f(t) = 40.9 \cdot 1.072^t$ b) $f(0) = 40.9 \approx 41$ c) $f(5 \cdot 60) \approx 46.8 \cdot 10^9$
 - d) Aus $2 \cdot 40.9 = 40.9 \cdot 1.072^t$ bestimmt man $t = 9.97 \approx 10$ (min). D.h. etwa alle 10 Minuten verdoppelt sich die Zahl der Bakterien.

Nr. 79) a)
$$f(0) = 22 - 16 = 6$$
 b)

t in min	0	15	30	45	60	75
$f \text{ in } {}^{\circ}C$	6	14	18	20	21	21,5

c)
$$f(t) = 15$$
 bei $t \approx 17.9$

c)
$$f(t) = 15$$
 bei $t \approx 17.9$ d) $f(t) = 22 - 16 \cdot (0.5^{1/15})^t = 22 - 16 \cdot 0.955^t$

Umkehrfunktionen

b)
$$f^{-1}$$
: $y = \frac{\ln 4x}{\ln 3} = \log_3 4x = \log_3 x + \log_3 4$

b)
$$f(x) = 0$$
 bei $x = \pm \sqrt{2}$ c) $f(x) = 1$ bei $x = \pm \sqrt{6}$

- Nr. 82) D = [-4, 4], W = [0, 4]. Das Schaubild ist der obere Halbkreis um Urprung mit Radius 4. Durch Einschränken des Definitionsbereichs auf z.B. [0, 4] kann f umgekehrt werden: f^{-1} : $y = \sqrt{16 - x^2}$. Das Schaubild von f^{-1} ist gleich dem von f, eingeschränkt auf den Bereich [0, 4]. Es bildet einen Viertelkreis.
- Nr. 83) i) umkehrbar für alle $x \in \mathbb{R}$, $f^{-1}: y = 2x 6, x \in \mathbb{R}$
 - ii*) umkehrbar z.B. für $x \ge 0$, $f^{-1}: y = \sqrt{\frac{x}{2}}, x \ge 0$
 - iii*) umkehrbar z.B. für $x \ge 0$, $f^{-1}: y = \sqrt{x-1}, x \ge 1$
 - iv) umkehrbar für alle $x \in \mathbb{R}$, $f^{-1}: y = \log_2 9x, x > 0$
 - v) umkehrbar für alle $x \in \mathbb{R}$. Die Funktion f^{-1} stellen wir abschnittweise dar:

$$y = \sqrt[3]{\frac{x}{8}} = \frac{1}{2}\sqrt[3]{x}$$
 für $x \ge 0$ und $y = -\sqrt[3]{\frac{|x|}{8}} = -\frac{1}{2}\sqrt[3]{|x|}$ für $x < 0$.

- vi) umkehrbar für alle $x \ge 0$, $f^{-1}: y = \left(\frac{x}{2}\right)^4, x \ge 0$
- vii) umkehrbar für alle $x \neq 0$, $f^{-1}: y = \frac{1}{x}, x \neq 0$ $(f = f^{-1})$
- viii) umkehrbar für alle $x>0, \quad f^{-1}: \ y=10^{x/3}, \ x\in \mathbb{R}$

Funktionen, bei denen der Definitionsbereich eingeschränkt werden muss, sind mit * gekennzeichnet.

Nr. 84) Das Vertauschen der x- und y-Koordinate entspricht dem Spiegeln des Schaubilds an der 1. Winkelhalbierenden y=x. Dabei entsteht aber ein Schaubild, das nicht mehr zu einer Funktion gehört. Will man f umkehren, so muss man den Definitionsbereich einschränken, z.B. auf $x \le -3$ oder $-3 \le x \le 0$ oder $0 \le x \le 3$ oder $x \ge 3$.

Trigonometrische Funktionen

Nr. 85)

α	45°	30°	1°	60°	15°	540°	135°	240°	450°
x	$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{\pi}{180}$	$\frac{\pi}{3}$	$\frac{\pi}{12}$	3π	$\frac{3}{4}\pi$	$\frac{4}{3}\pi$	$\frac{5}{2}\pi$

- Nr. 86) a) $\sin 38^{\circ} > 0$, $\cos 105^{\circ} < 0$, $\sin 105^{\circ} > 0$, $\cos 214^{\circ} < 0$, $\cos 299^{\circ} > 0$, $\sin 311^{\circ} < 0$
 - b) $\sin 40^\circ = 0.643$, $\sin 249^\circ = -0.934$, $\cos 99^\circ = -0.156$, $\sin \frac{\pi}{8} = 0.383$, $\sin (1.3\pi) = -0.809$, $\cos \frac{8}{7}\pi = -0.901$
 - c) i) $\sin x = 0.3 \rightarrow x_1 = 0.3$ INV SIN = 0.305. Der zweite x-Wert ist bezüglich der Stelle $x = \frac{\pi}{2}$ zum ersten Wert symmetrisch. Es gilt daher $x_2 = \frac{\pi}{2} + \left(\frac{\pi}{2} x_1\right) = \pi x_1 = 2.837$.
 - ii) $\cos x = 0.3 \rightarrow x_1 = 1,266$. Den zweiten x-Wert erhält man aus der Beziehung $x_2 = 2\pi x_1 = 5,017$.
 - iii) $\sin x = -0.75 \rightarrow x^* = -0.848$. Da $x^* < 0$ ist, liefert hier der Taschenrechner einen Wert, der nicht im Intervall $[0,2\pi]$ liegt. Da der Sinus jedoch periodisch mit Periode 2π ist, erhält man einen der gewünschten x-Werte, indem man zu x^* 2π hinzuaddiert: $x_1 = x^* + 2\pi = 5.435$. Den zweiten x-Wert erhält man, wenn man bedenkt, dass x_1 und x_2 symmetrisch bezüglich der Stelle $x = \frac{3\pi}{2}$ sind: $x_2 = \frac{3\pi}{2} \left(x_1 \frac{3\pi}{2}\right) = 3\pi x_1 = 3.990$.
 - iv) $\cos x = -0.75 \rightarrow x_1 = 2.419$. Aus Symmetriegründen ergibt sich wie oben: $x_2 = \pi + (\pi x_1) = 2\pi x_1 = 3.864$.
- Nr. 87) b) $\sin 65^{\circ} = 0,906, \cos 65^{\circ} = 0,423$
 - c) Der Winkel $180^{\circ} 65^{\circ} = 115^{\circ}$ hat denselben sin-Wert wie der Winkel 65° . Der Winkel $360^{\circ} 65^{\circ} = 295^{\circ}$ hat denselben cos-Wert wie der Winkel 65° .
- Nr. 88) Die Beziehung gilt nach dem Satz des Pythagoras für das rechtwinkligen Dreieck im Einheitskreis, bei dem die zwei Katheten die Länge $\sin x$ und $\cos x$ haben und die Hypotenuse die Länge 1 besitzt.
- Nr. 89) a) $y = \sin(x 0.4\pi)$, $y = 2\sin(x + 0.2\pi)$
 - b) Die Schaubilder sind identisch, da die sin-Funktion die Periode 2π hat: $\sin(x+4\pi) = \sin(x+2\cdot(2\pi)) = \sin x$.

Nr. 90) a)

)	α	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°
	x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	π	$\frac{7}{6}\pi$	$\frac{5}{4}\pi$
	$\tan x$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	n.d.	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1

α	240°	270°	300°	315°	330°	360°
x	$\frac{4}{3}\pi$	$\frac{3}{2}\pi$	$\frac{5}{3}\pi$	$\frac{7}{4}\pi$	$\frac{11}{6}\pi$	2π
$\tan x$	$\sqrt{3}$	n.d.	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

Definitionsmenge $D = \mathbb{R} \setminus \left\{ \frac{1}{2}\pi, \frac{3}{2}\pi, \frac{5}{2}\pi, \ldots \right\}$. Wertebereich $W = \mathbb{R}$. Periode π , d.h. $\tan(x+\pi) = \tan x$.

b) $\tan x=2\to x_1=2$ INV TAN = 1,107. Da der Tangens periodisch mit Periode π ist, gilt: $x_2=x_1+\pi=4,249.$

VI. Folgen und Reihen

Nr. 91) a)
$$(a_n) = (-3, 9, -27, 81, -243, ...), a_{21} \approx -1.04 \cdot 10^{10}, a_{99} \approx -1.72 \cdot 10^{47}$$

b)
$$(a_n) = (1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \ldots), a_{21} = \frac{1}{441}, a_{99} = \frac{1}{9801}$$

c)
$$(a_n) = (-1, 1, -1, 1, -1, \ldots), a_{21} = -1, a_{99} = -1$$

d)
$$(a_n) = \left(-5, -\frac{7}{5}, -1, -\frac{11}{13}, -\frac{13}{17}, \ldots\right), a_{21} = -\frac{5}{9}, a_{99} = -\frac{67}{131}$$

Nr.92) Die Rekursion für die Folge der ungeraden Zahlen lautet $a_1=1,\ a_{n+1}=a_n+2.$

Nr.93) a)
$$\sum_{k=1}^{100} k(k+1)$$
 b) $\sum_{k=1}^{33} 3ak$ c) $\sum_{k=1}^{m} \frac{k}{2}$

Nr.94) a) arithmetische Folge, $a_1 = 7$, d = 7 b) geometrische Folge, $a_1 = 1$, q = 2

c) geometrische Folge, $a_1 = \frac{4}{3}$, $q = \frac{2}{3}$ d) arithmetische Folge, $a_1 = -1$, d = -3

Nr. 95) a)
$$\sum_{n=1}^{25} 3n = 25 \cdot \frac{3+75}{2} = 975$$
 b) $\sum_{n=1}^{37} (2n-3) = 1295$

c)
$$\sum_{n=1}^{17} 3 \cdot 2^{n-1} = 3 \cdot \frac{2^{17} - 1}{2 - 1} = 393213$$
 d) $\sum_{n=1}^{99} 7 \cdot \left(\frac{1}{3}\right)^{n-1} \approx 10.5$

Nr. 96) a)
$$K(18) = 100 \cdot 1,035^{18} = 185,75$$

b)
$$K(t) = 200 = 100 \cdot 1{,}035^t \implies t \approx 20{,}1$$

c)
$$250 = 100 \cdot \left(1 + \frac{p}{100}\right)^{18} \implies p = 100 \cdot \left(\sqrt[18]{2,5} - 1\right) \approx 5,22$$

Nr. 97) a)
$$|a_{n+1} - a_n| = \left| \frac{3(n+1)+1}{(n+1)-2} - \frac{3n+1}{n-2} \right| = \left| \frac{(3n+4)(n-2) - (3n+1)(n-1)}{(n-1)(n-2)} \right|$$

= $\left| \frac{3n^2 - 2n - 8 - 3n^2 + 2n + 1}{(n-1)(n-2)} \right| = \left| \frac{-7}{(n-1)(n-2)} \right| < \frac{1}{1000}$

$$\iff n^2 - 3n + 2 > 7000 \iff n \ge 86$$

b)
$$|b_{n+1} - b_n| = \frac{1}{2^{n+1}} \le \frac{1}{1000} \iff n \ge 9$$

Nr. 98) a) Die Folge $(a_n) = \left(\frac{n}{2n+1}\right)$ ist streng monoton wachsend, beschränkt und konvergiert gegen den Grenzwert $g = \frac{1}{2}$. Das können wir folgendermaßen beweisen.

1. Monotonie:
$$a_{n+1} - a_n = \frac{n+1}{2(n+1)+1} - \frac{n}{2n+1} = \frac{1}{(2n+3)(2n+1)} > 0$$
, damit gilt $a_{n+1} > a_n$ für alle $n \in \mathbb{N}$. Die Folge ist also streng monoton wachsend.

- 2. Beschränktheit: Es gilt $a_n = \frac{n}{2n+1} \ge a_1 = \frac{1}{3}$. Außerdem gilt $a_n = \frac{n}{2n+1} < \frac{n}{2n} = \frac{1}{2}$. Die Folge besitzt also die Schranken $\frac{1}{3}$ und $\frac{1}{2}$ und ist mithin beschränkt.
- 3. Grenzwert $g = \frac{1}{2}$: Die Differenzfolge $\left(a_n \frac{1}{2}\right) = \left(\frac{n}{2n+1} \frac{1}{2}\right) = \left(-\frac{1}{4n+2}\right)$ ist eine Nullfolge, also besitzt die Folge den Grenzwert $g = \frac{1}{2}$.
- b) Die Folge $\left(\frac{n+\sqrt{n}}{4\sqrt{n}}\right)$ ist streng monoton wachsend, besitzt die untere Schranke $\frac{1}{2}$, keine obere Schranke und ist divergent.
- c) Die Folge $\left(\frac{n^2+n+1}{5n^2+n}\right)$ ist streng monoton fallend, besitzt die untere Schranke 0 und die obere Schranke $\frac{1}{2}$ und konvergiert gegen den Wert $\frac{1}{5}$.
- d) Die Folge $\left(\frac{(-3)^n+2}{2\cdot(-3)^n}\right)=\left(\frac{1}{2}+\frac{1}{(-3)^n}\right)$ zeigt keine Monotonie, besitzt die untere Schranke $\frac{1}{6}$, die obere Schranke $\frac{11}{18}$ und den Grenzwert $g=\frac{1}{2}$.
- e) Die Folge $\left(\frac{\sin n}{n}\right)$ zeigt keine Monotonie, besitzt die untere Schranke -1, die obere Schranke 1 und den Grenzwert g=0.
- f) Die Folge $\left(\frac{n^3}{n^2+1}\right)$ ist streng monoton steigend, besitzt die untere Schranke $\frac{1}{2}$, keine obere Schranke und ist divergent.

VII. Kurven und Gleichungen von Kegelschnitten

Nr. 99) a)
$$\frac{x}{(-5)} + \frac{y}{3} = 1$$
 b) $\frac{x}{(\frac{2}{3})} + \frac{y}{(-2)} = 1$

Nr. 100)
$$(AB): y = -\frac{1}{6}x - \frac{5}{3}, c = \sqrt{37}$$
 $(BC): y = -5x + 8, a = \sqrt{26}$ $(CA): y = \frac{4}{5}x + \frac{11}{5}, b = \sqrt{41}$

Nr. 101)
$$2\sqrt{17}$$

Nr. 102) a)
$$x^2 + y^2 = 2$$
, $x^2 + y^2 - 2 = 0$

b)
$$(x-1)^2 + (y-1)^2 = 36$$
, $x^2 - 2x + y^2 - 2y - 34 = 0$

c)
$$(x+2)^2 + (y+3)^2 = 1$$
, $x^2 + 4x + y^2 + 6y + 12 = 0$

d)
$$(x+1)^2 + (y-5)^2 = 3$$
, $x^2 + 2x + y^2 - 10y + 23 = 0$

Nr. 103) Die gegebenen Gleichungen müssen durch quadratisches Ergänzen in die Form der allgemeinen Kreisgleichung gebracht werden.

a)
$$x^2 + 8x + y^2 + 2y + 15 = x^2 + 8x + (16 - 16) + y^2 + 2y + (1 - 1) + 15$$

= $(x^2 + 8x + 16) + (y^2 + 2y + 1) - 16 - 1 + 15 = (x + 4)^2 + (y + 1)^2 - 2 = 0$
 $\Leftrightarrow (x + 4)^2 + (y + 1)^2 = 2$

Also hat der Kreis den Mittelpunkt $M_1=(-4,-1)$ und den Radius $r_1=\sqrt{2}$

b)
$$M_2 = (1, 1)$$
 und $r_2 = 3$.

Nr. 104) A liegt nicht, B liegt auf dem Kreis um M mit Radius 10.

Nr. 105) a)
$$\left(\frac{x}{11}\right)^2 + \left(\frac{y}{5}\right)^2 = 1$$
, $25x^2 + 121y^2 - 3025 = 0$
b) $\left(\frac{x}{3}\right)^2 + \left(\frac{y}{7}\right)^2 = 1$, $49x^2 + 9y^2 - 441 = 0$

c)
$$\left(\frac{x}{1}\right)^2 + \left(\frac{y}{1}\right)^2 = 1$$
, $x^2 + y^2 - 1 = 0$

Nr. 106) a)
$$2x^2 - 2y^2 + 16x + 10y - \frac{105}{2} = 0 \iff x^2 - y^2 + 8x + 5y - \frac{105}{4} = 0 \iff (x^2 + 8x + 16) - 16 - (y^2 - 2 \cdot \frac{5}{2}y + \frac{25}{4}) + \frac{25}{4} - \frac{105}{4} = 0 \iff (x + 4)^2 - (y - \frac{5}{2})^2 = 36 \implies \text{Hyperbel, da vor } x^2 \text{ und } y^2 \text{ verschiedene Vorzeichen stehen.}$$

b)
$$(x+4)^2 + 5y + 30 = 0 \implies \text{Parabel } (y = -\frac{1}{5}(x+4)^2 - 6).$$

c)
$$\frac{(x-3)^2}{3^2} + \frac{y^2}{12^2} = 1$$
 \implies Ellipse um den Punkt $M(3,0)$ mit Halbachsenlängen 3 und 12.

d)
$$(x+2)^2 + (y-4)^2 = 25$$
 \Longrightarrow Kreis mit Mittelpunkt $M(-2,4)$ und Radius $r=5$.

Schaubilder

zu Nr. 44 c)

zu Nr. 44 f)





















