Aufgaben

- 1) Lösen Sie die Differentialgleichungen:
 - a) $y \cdot y' e^{2x} = 0$
- b) $y' \cdot \tan x 2\sqrt{y} = 0$
- c) $x^3 dx + (y+1)^2 dy = 0$ d) $e^{yy'} x = 0$
- 2) Wie lauten die Differentialgleichungen zu folgenden Kurvenscharen $(c \in \mathbb{R})$

 - a) $y = (x c)^2$ b) $y = c(1 + \cos x)$ c) y = ln[c(x 1)]
- 3) Bestimmen Sie die Orthogonaltrajektoren der Kurvenscharen $(c \in \mathbb{R})$
 - a) x + 2y = c
- b) $x^2 + 2y^2 = c$ c) $y = c \cdot e^{-2x}$

<u>Hinweis:</u> Gegeben sei die Dgl. y' = f(x, y). Kurven, die in jedem Punkt zum zugehörigen Linienelement senkrecht verlaufen, heißen Orthogonaltrajektorien. Die Dgl. der Orthogonaltrajektorien erhält man, indem man in der ursprünglichen Dgl. y' durch $-\frac{1}{y'}$ ersetzt. Lösungskurven der gegebenen Dgl. und ihre Orthogonaltrajektorien schneiden sich in jedem Punkt unter einem rechten Winkel.

- 4) Berechnen Sie die allgemeine Lösung folgender Differentialgleichungen mit Hilfe einer geeigneten Substitution:
 - a) $y' = (x + y)^2$

- b) (2x y + 3)y' = 1
- c) $2xyy' + x^2 y^2 = 0$ d) $xy' + \sqrt{x^2 + y^2} = y$
- 5) Lösen Sie die folgenden Anfangswertprobleme
 - a) $y' + \frac{y}{1+x} + 6x = 0$; y(0) = 3 b) $y' \cdot \sin x = y \cdot \cos x$; $y(\frac{\pi}{6}) = 1$
 - c) y' + 2xy = 2x; y(0) = 2 d) $y' \cdot x \cdot \ln x = y$; $y(e^2) = 1$
- 6) a) Berechnen Sie die allgemeine Lösung der Dgl. $y' \frac{y}{x} = x$
 - b) Geben Sie direkt aus der Dgl. die Ortskurve der Extrempunkte der Scharkurven an.
 - c) Skizzieren Sie die Lösungskurven durch $P(-2 \mid 0)$ sowie einige weitere Scharkurven.
- 7) a) Lösen Sie das Anfangswertproblem für y(x)
 - $y'' \cos x + y' \sin x = 0$ y(0) = 1, y'(0) = 2
 - b) Berechnen Sie für $x \ge 0$ die allgemeine Lösung der Dgl. $2xy'' y' = 9x^2$.
- 8) Wie lautet die allgemeine Lösung der Dgl. y'' + 6y' + cy = 0 für
 - a) c = 5
- b) c = 9
- c) c = 13

9) Lösen Sie die Anfangswertprobleme

a)
$$\frac{d^2s}{dt^2} + 2\frac{ds}{dt} + 2s = 0$$
, $s(0) = 1$, $s'(0) = 1$;
b) $y'' + 4y' + (4 + \omega^2)y = 0$, $y(0) = 1$, $y'(0) = \omega - 2$;
c) $y'' - 2ky' + k^2y = 0$, $y(0) = \sqrt{2}$, $y'(0) = k\sqrt{2}$;

- 10) Gegeben ist ein System von Fundamentallösungen. Wie lautet die zugehörige Dgl. der Form $y'' + a_1y' + a_0y = 0$?
 - a) e^{2x} , e^{-4x} b) $\cos 4x$, $\sin 4x$ c) e^{2x} , $x \cdot e^{2x}$ d) $e^{-x} \cos 3x$, $e^{-x} \sin 3x$
- 11) Berechnen Sie die allgemeine Lösung der Dgl. y'' y' 2y = r(x) für folgende Störfunktionen r(x): a) $2x^2 e^{2x}$; b) $\sin x$; c) e^{-x}
- 12) Berechnen Sie die allgemeine Lösung der Differentialgleichungen
 - a) $y'' + 2y' + 5y = 50x + 8e^{-x}$ b) $y'' + 2y' + 5y = \cos 2x$ c) $y''' + y = 12 \cosh x$ d) $y^{(4)} - 3y'' - 4y = x^2 + e^{-x}$
- 13) Geben Sie für die folgenden linearen Differentialgleichungen den Störgliedansatz zur Berechnung der partikulären Lösung y_p an. Die Berechnung von y_p
 - a) $y''' + 3y'' + 3y' + y = x^3 + e^{-x} \sin 2x$ b) $y''' + 3y'' + 3y' + y = x^2(e^x + e^{-x})$

ist nicht verlangt.

- 14) a) Welche Lösungskurven der Dgl. $y'' + 2y' 3y = 2\sin x$ geht mit der Steigung 1 durch den Nullpunkt?
 - b) Welche Lösungskurve der Dgl. y'' + 6y' + 25y = 50x 13 hat in $P(0 \mid 1)$ eine waagrechte Tangente?
- 15) a) Wie muß a gewählt werden, damit die Dgl. y'' + ay' + 2y = 0 die Lösung $y = e^{-x} 2e^{-2x}$ besitzt? Wie lautet für dieses a die allgemeine Lösung?
 - b) Die Dgl. y'' + 2y' + 2y = g(x) besitze die partikuläre Lösung $y_p = 3 \sin x$. Was ergibt sich für g(x)? Welche allgemeine Lösung hat die Dgl.? Welche spezielle Lösungkurve geht durch den Nullpunkt mit der Steigung 5?
- 16) a) Zeigen Sie, daß $y=e^{-x}\cos 2x$ eine spezielle Lösung der Dgl. y'''+y'-10y=0 ist. Bestimmen Sie die allgemeine Lösung.
 - b) Bestimmen Sie die Lösung der Dgl. $y''' + y' 10y = e^{-x}$ unter den Bedingungen y(0) = 0; y'(0) = 1; y(x) ist beschränkt für $x \to \infty$.

- 17) Diskutieren Sie die Lösungen der Dgl. $y'' + 2y' + p \cdot y = e^{-x}$ in Abhängigkeit vom reellen Parameter p.
- 18) Gegeben ist das Randwertproblem $y'' + \omega^2 y = 0$; $y(0) = y(\pi) = 0$
 - a) Wie lautet die allgemeine Lösung der Dgl.?
 - b) Für welche Werte von ω (Eigenwerte des homogenen Randwertproblems) läßt sich die allgemeine Lösung an die Randbedingungen anpassen?
 - c) Bestimmen und skizzieren Sie diejenige Lösungskurve, die in $[0,\pi]$ nur ein relatives Extremum besitzt und im Nullpunkt die Steigung 1 hat.
 - d) Welcher Zusammenhang besteht zwischen den Eigenwerten und der Anzahl der Extrema der zugehörigen Lösungsfunktionen?

<u>Zusatz</u>: Welcher Gleichung genügen die Eigenwerte des Problems $y'' + \omega^2 y = 0$; $y(0) + \dot{y}(0) = 0$, $y(\pi) = 0$.

(Das lineare homogene Gleichungssystem für die Integrationskonstante besitzt nichttriviale Lösungen, wenn seine Koeffizientendeterminante Null ist.)

- 19) Lösen Sie das Anfangswertproblem $\{\dot{x}+x-y=0\;;\;\dot{y}+2x-y=0\}$ mit $x(0)=1\;;y(0)=0$
 - a) mit Hilfe des Eliminationsverfahrens
 - b) mit Hilfe der Matrizenrechnung (Eigenwertproblem)
- 20) Transformieren Sie die Dgl. y'''-2y''+3y'-y=0 auf die Normalform $\underline{y'}=\underline{A}\cdot\underline{y}$. Berechnen Sie die charakteristische Gleichung der gegebenen Dgl. und diejenige der Normalform.
- 21) Bestimmen Sie die allgemeine Lösung der folgenden Dgl.-Systeme

a)
$$\dot{x}_1 = -x_1 + x_2 + x_3$$

 $\dot{x}_2 = x_1 - x_2 + x_3$
 $\dot{x}_3 = x_1 + x_2 + x_3$

b)
$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = x_3$
 $\dot{x}_3 = -x_1 - x_2 - x_3$

- 22) Bestimmen Sie die Lösung des Anfangswertproblems $\{\dot{x} + y = \sin 2t \; ; \; \dot{y} x = \cos 2t \}$ mit $x(0) = 1, \; y(0) = 0$
- 23) Gegeben ist das Dgl.-System $\underline{\dot{x}} = \underline{A} \cdot \underline{x}$ mit $\underline{A} = \begin{bmatrix} 1 & -1 \\ \alpha & -3 \end{bmatrix}$; $\alpha \in \mathbb{R}$.
 - a) Für welche $\alpha \in \mathbb{R}$ sind die Eigenwerte der Matrix \underline{A} reell, für welche sind sie komplex ?
 - b) Für welche $\alpha \in \mathbb{R}$ sind die Lösungen des Systems asymptotisch stabil?

24) Transformieren Sie das Differentialgleichungssystem

$$\ddot{x}_1 + 2ax_1 + ax_2 + b\dot{x}_1 = \cos \omega t$$

$$\ddot{x}_2 + 2ax_2 + ax_1 + b\dot{x}_2 = 0$$

durch Einführung der Zustandsvariablen

$${z_1 = x_1, z_2 = \dot{x}_1, z_3 = x_2, z_4 = \dot{x}_2}$$

in ein System der Form $\dot{z} = \underline{A} \cdot \underline{z} + \underline{r}$.

25) Gegeben ist das Differentialgleichungssystem

$$\begin{vmatrix} \ddot{x} + 3x - 2\dot{y} = 0 \\ \ddot{y} + 3y + 2\dot{x} = 0 \end{vmatrix}$$
 mit $x(0) = 1$, $\dot{x} = 0$, $y(0) = 0$, $\dot{y} = 1$.

- a) Zeigen Sie, daß sich das System auf die Dgl. $\ddot{x}+10\ddot{x}+9x=0$ zurückführen läßt und ermitteln Sie damit die Lösung des Anfangswertproblems.
- b) Formen Sie das System um in ein System von 4 Dgl. 1.Ordnung. Wie lautet die charakteristische Gleichung dieses Systems.
- 26) Von einem Dgl.-System $\underline{\dot{x}} = \underline{A} \cdot \underline{x}$ 2.Ordnung kennt man einen Eigenwert $\lambda_1 = -1 + j$ und den zugehörigen Eigenvektor $\underline{c_1} = \begin{bmatrix} 1 \\ j \end{bmatrix}$
 - a) Geben Sie den 2. Eigenwert und die allgemeine Lösung des Systems an.
 - b) Bestimmen Sie die Matrixelemente a_{11} , a_{12} , a_{21} , wenn $a_{22} = -1$ ist.
- 27) Die freien Schwingungen eines Feder-Masse-Systems mit 2 Freiheitsgraden werden beschrieben durch das Dgl.- System:

$$\{\ddot{x}_1 + 3\omega^2 x_1 - \omega^2 x_2 = 0; \ \ddot{x}_2 - 2\omega^2 x_1 + 2\omega^2 x_2 = 0\}$$

Bestimmen Sie die Kreisfrequenzen und die Amplitudenvektoren der beiden Grundschwingungen. Wie lautet die allgemeine Lösung des Systems? Welche Lösung ergibt sich speziell für die Anfangsbedingung

$${x_1(0) = 1, \ \dot{x}_1(0) = 0, \ x_2(0) = -1, \ \dot{x}_2(0) = 0}$$
?

- 28) Gegeben ist die Dgl. $\ddot{x} + \sin x \cdot \cos x = 0$
 - a) Bestimmen Sie die Gleichung der Phasenkurven in der x, \dot{x} -Ebene.
 - b) Skizzieren Sie die Phasenkurven zu den Anfangsbedingungen

b1)
$$x(0) = \frac{\pi}{4}$$
, $\dot{x}(0) = 0$ b2) $x(0) = \frac{\pi}{4}$, $\dot{x} = \frac{1}{2}\sqrt{2}$ b3) $x(0) = \frac{\pi}{4}$, $\dot{x}(0) = 1$

29) Bestimmen Sie die Gleichung der Phasenkurven zu folgenden Dgln.

a)
$$\ddot{x} + 2x^3 = 0$$
 b) $\ddot{x} - x + 2x^3 = 0$

Skizzieren Sie das zugehörige Phasenporträt.

15)
$$Z(\omega) = R + \frac{\omega L}{1 - \omega^2 LC} j$$

a) Re
$$(Z)=R$$
 , Im $(Z)=\frac{\omega L}{1-\omega^2 LC}$, $|Z|=\sqrt{R^2+\frac{\omega^2 L^2}{(1-\omega^2 LC)^2}}$;

- b) Gerade x = Re (Z) = R parallel zur imaginären Achse ; c) $\omega = \frac{1}{\sqrt{LC}}$
- 16) a_1) Gerade Re $(w) = -\frac{1}{2}$; a_2) reelle Achse ;
 - a_3) Kreis um $\left(-\frac{1}{2}\mid 0\right)$ mit Radius $\frac{1}{2}$; a_4) Inneres des Kreises von a_3)
 - b_1) Kreis um $(1 \mid -\frac{1}{2})$ mit Radius $\frac{1}{2}$; b_2) Kreis um $(1 \mid 0)$ mit Radius $\frac{1}{2}$

2 Lösungen zu II.7

1) a)
$$y = \pm \sqrt{C + e^{2x}}$$
, b) $y = [C + \ln|\sin x|]^2$, c) $\frac{1}{3}y^3 + y^2 + y + \frac{1}{4}x^4 = C$ d) $y = \pm \sqrt{2x[\ln(x) - 1] + C}$

2) a)
$$4y - y'^2 = 0$$
; b) $y \sin x + y'(1 + \cos x) = 0$; c) $y'(x - 1) = 1$

3) a)
$$y = 2x + C$$
; b) $y = Cx^2$; c) $y = \pm \sqrt{x + C}$

4) a)
$$y = -x + \tan(x+C)$$
; b) $e^{-2y}(\frac{y}{2}-x-\frac{5}{4}) = C$; c) $x^2+y^2-Cx=0$; d) $y = \frac{1}{2}(C-\frac{x^2}{C})$, $C>0$

5) a)
$$y = \frac{3 - 3x^2 - 2x^3}{1 + x}$$
; b) $y = 2\sin x$; c) $y = 1 + e^{-x^2}$; d) $y = \frac{1}{2}\ln x$

- 6) a) $y = Cx + x^2$; b) $y = -x^2$; c) y = x(C+x) nach oben geöffnete Normalparabel mit $S(-\frac{C}{2} \mid -\frac{C^2}{2})$
- 7) a) $y = 2\sin x + 1$; b) $y = x^3 + C_1 x^{\frac{3}{2}} + C_2$
- 8) a) $y = C_1 e^{-x} + C_2 e^{-5x}$; b) $y = e^{-3x} (C_1 + C_2 x)$; c) $y = e^{-3x}(C_1 \sin 2x + C_2 \cos 2x)$
- 9) a) $s = e^{-t}(\cos t + 2\sin t)$; b) $y = e^{-2x}(\cos \omega x + \sin \omega x)$; c) $y = \sqrt{2}e^{Kx}$
- 10) a) y'' + 2y' 8y = 0; b) y'' + 16y = 0; c) y'' 4y' + 4y = 0d) y'' + 2y' + 10y = 0
- 11) $y_h = C_1 e^{2x} + C_2 e^{-x}$ a) $y = y_h - \frac{3}{2} + x - x^2 - \frac{1}{3}xe^{2x}$; b) $y = y_h + \frac{1}{10}\cos x - \frac{3}{10}\sin x$; c) $y = y_h - \frac{1}{3}xe^{-x}$
- 12) a) $y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x + 2) + 10x 4$; b) $y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x) + \frac{1}{17}(\cos 2x + 4 \sin 2x)$; c) $y = C_1 e^{-x} + e^{\frac{x}{2}} (C_2 \cos \frac{\sqrt{3}}{2} x + C_3 \sin \frac{\sqrt{3}}{2} x) + 3e^x + 2xe^{-x}$;

 - d) $y = C_1 \cos x + C_2 \sin x + C_3 e^{2x} + C_4 e^{-2x} \frac{1}{4}x^2 + \frac{3}{8} \frac{1}{6}e^{-x}$

13) a)
$$y_p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + e^{-x} (b_1 \cos 2x + b_2 \sin 2x)$$

b) $y_p = e^x (a_0 + a_1 x + a_2 x^2) + x^3 e^{-x} (b_0 + b_1 x + b_2 x^2)$

14) a)
$$y = -\frac{1}{5}\cos x - \frac{2}{5}\sin x + \frac{1}{2}e^x - \frac{3}{10}e^{-3x}$$
; b) $y = 2x - 1 + e^{-3x}(\sin 4x + 2\cos 4x)$

15) a)
$$a = 3$$
; $y = C_1 e^{-x} + C_2 e^{-2x}$; b) $g(x) = 3\sin x + 6\cos x$
 $y = e^{-x}(C_1\cos x + C_2\sin x) + 3\sin x$; $y_p = 2e^{-x}\sin x + 3\sin x$

16) a)
$$y = e^{-x} (C_1 \cos 2x + C_2 \sin 2x) + C_3 e^{2x}$$
;
b) $y = -\frac{1}{12} e^{-x} + \frac{1}{12} e^{-x} \cos 2x + \frac{1}{2} e^{-x} \sin 2x$

17)
$$p = 1$$
: $y = e^{-x} (C_1 + C_2 x + \frac{1}{2} x^2)$
 $p > 1$: $y = e^{-x} (C_1 \cos \sqrt{p - 1} x + C_2 \sin \sqrt{p - 1} x) + \frac{1}{p - 1} e^{-x}$
 $p < 1$: $y = e^{-x} (C_1 e^{\sqrt{1 - p} x} + C_2 e^{-\sqrt{1 - p} x}) + \frac{1}{p - 1} e^{-x}$

- 18) a) $y = C_1 \cos(\omega x) + C_2 \sin(\omega x)$; b) $\omega = \pm 1, \pm 2, \dots$; c) $y = \sin x$ d) Zu den Eigenwerten $\omega = \pm n$ gehören n Extrema in $0 < x < \pi$ Zusatz: $\sin(\omega \pi) \omega \cos(\omega \pi) = 0$
- 19) $x = \cos t \sin t$; $y = -2\sin t$

20)
$$\{y_1' = y_2 ; y_2' = y_3 ; y_3' = y_1 - 3y_2 + 2y_3\} ; \lambda^3 - 2\lambda^2 + 3\lambda - 1 = 0\}$$

21) a)
$$\underline{x} = K_1 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix} e^t + K_2 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} e^{2t} + K_3 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} e^{-2t}$$

b) $\underline{x} = K_1 \begin{bmatrix} -\cos t \\ \sin t \\ \cos t \end{bmatrix} + K_2 \begin{bmatrix} -\sin t \\ -\cos t \\ \sin t \end{bmatrix} + K_3 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} e^{-t}$

22)
$$\underline{x} = \frac{4}{3} \begin{bmatrix} \cos t \\ \sin t \end{bmatrix} + \frac{1}{3} \begin{bmatrix} -\cos 2t \\ \sin 2t \end{bmatrix}$$

23) a) reell für $\alpha < 4$; komplex für $\alpha > 4$; b) $\alpha > 3$

$$24) \ \dot{z} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -2a & -b & -a & 0 \\ 0 & 0 & 0 & 1 \\ -a & 0 & -2a & -b \end{bmatrix} \underline{z} + \begin{bmatrix} 0 \\ \cos \omega t \\ 0 \\ 0 \end{bmatrix}$$

25) a)
$$\{x = \cos t ; y = \sin t\}$$

b) Mit
$$\{x_1 = x \; ; \; x_2 = \dot{x} \; ; \; x_3 = y \; ; \; x_4 = \dot{y}\}$$
 ergibt sich $\{\dot{x}_1 = x_2 \; ; \; \dot{x}_2 = 2x_4 - 3x_1 \; ; \; \dot{x}_3 = x_4 \; ; \; \dot{x}_4 = -3x_3 - 2x_2\} \; ; \; \lambda^4 + 10\lambda^2 + 9 = 0$

26) a)
$$\lambda_2 = -1 - j$$
; $\underline{x} = C_1 e^{-t} \begin{bmatrix} \cos t \\ -\sin t \end{bmatrix} + C_2 e^{-t} \begin{bmatrix} \sin t \\ \cos t \end{bmatrix}$
b) $a_{11} = -1$; $a_{12} = 1$; $a_{21} = -1$

- 27) char.Gleichung $\lambda^4 + 5\omega^2\lambda^2 + 4\omega^4 = 0$; Eigenfrequenzen $\omega_1 = \omega$, $\omega_2 = 2\omega$; Schwingungsformen $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ allgemeine Lösung $\{x_1(t) = C_1 \cos \omega t + C_2 \sin \omega t + C_3 \cos 2\omega t + C_4 \sin 2\omega t ; x_2(t) = 2C_1 \cos \omega t + 2C_2 \sin \omega t C_3 \cos 2\omega t C_4 \sin 2\omega t \}$ Spezielle Lösung $\{x_1(t) = \cos 2\omega t ; x_2(t) = -\cos 2\omega t \}$ vgl. 2.Grundschwingung!
- 28) a) $\dot{x}^2 = \frac{1}{2}\cos 2x + C$; b₁) $C = 0: \dot{x}^2 = \frac{1}{2}\cos 2x$; b₂) $C = \frac{1}{2}: \dot{x}^2 = \frac{1}{2}\cos 2x + \frac{1}{2}$; b₃) $C = 1: \dot{x}^2 = \frac{1}{2}\cos 2x + 1$
- 29) a) $\dot{x}^2 = k x^4$; b) $\dot{x}^2 = k + x^2 x^4$

