

Studienfach: Mathematik Klausur

Datum:

18.03.2005

Ausbildungsbereich: Technik

Studienjahrgang:

2005

Fachrichtung:

Maschinenbau

Studienhalbjahr:

1

Gruppe:

Bearbeitungszeit:

100 Minuten

Dozent:

Bauer, Bauer, Baum, Schäffler

Hilfsmittel:

Alle, außer elektronische Rechner

Bewertung:

Punkte:

Note:

Signum:

Student:

Aufgabe 1 (35 min.) (23)

Gegeben sind die Vektoren $\vec{p}=(1,1,0), \quad \vec{q}=(-1,0,1), \quad \vec{r}=(2,0,2)$.

- a) Man berechne den Winkel zwischen \vec{p} und \vec{q} sowie die Länge der Projektion des Vektors $\vec{p} + \vec{q}$ auf die Richtung von \vec{r} .
- b) Man gebe einen Vektor \vec{n} mit $|\vec{n}| = 1$ an, der auf \vec{q} und $\vec{p} + \vec{r}$ senkrecht steht.
- c) Es sei $\vec{a}=(a,2,5)$, $\vec{b}=(0,b,-2)$, $\vec{c}=(6,3a,0)$. Für welche Werte von $a\in\mathbb{R}$ und $b\in\mathbb{R}$
 - (i) stehen \vec{a} , \vec{b} , \vec{c} paarweise senkrecht aufeinander ?
 - (ii) sind \vec{a} , \vec{b} , \vec{c} komplanar?
- d) Geben sind die Vektoren $\vec{a}=(5,6,1)$ und $\vec{b}=(-8,-8,6)$. Man ermittle zwei Vektoren \vec{x} und \vec{y} , für die gilt: \vec{y} ist parallel zu \vec{b} , \vec{x} steht senkrecht auf \vec{b} , und $\vec{x}+\vec{y}=\vec{a}$.
- e) Gegeben seien die Punkte $P_1(1 \mid 2 \mid 3)$ und $P_2(3 \mid 5 \mid 1)$, sowie die Ebenenschar

$$E_k$$
: $(k+2)x + 3y + (k+2)z = 1, k \in \mathbb{R}$.

- (i) Zeigen Sie, dass die Gerade g, die durch die Punkte P_1 und P_2 geht, zu keiner der Ebenen E_k parallel ist.
- (ii) Für welches k ist E_k parallel zur x-z-Ebene?

Aufgabe 2 (45 min.)

- a) Für welche $n \in \mathbb{N}$ ist der Real-bzw. Imaginärteil von $(\sqrt{3} + j)^n$ null?
- b) Skizzieren Sie die Kurve in der komplexen Zahlenebene, die durch die Gleichung

$$zz^* - 3jz + 3jz^* + 8 = 0$$
 beschrieben wird.

(Hinweis: z* sei die zu z konjugiert komplexe Zahl)

c) Gegeben sei die komplexen Zahl

$$z_1 = \frac{3}{2} j + \frac{2 - j}{(1 + j)^2} .$$

- (i) Man bestimme Real- und Imaginärteil von z_1 sowie z_1^5 .
- (ii) Wie lauten alle Lösungen $w \in \mathbb{C}$ der Gleichung $(w z_1)^4 = -16$? (Real- und Imaginärteil sind nicht verlangt.)
- d) Untersuchen Sie die folgenden komplexwertigen Funktionen der reellen Variablen t; $z=z(t),\ z\in\mathbb{C}$, $t\in\mathbb{R}$. Skizzieren Sie die zugehörigen Ortskurven:

(i)
$$z = 3 + 2e^{jt}$$
 (ii) $z = 1 + t(1 - j)$

e) Die Schwingung $x(t) = 2\cos(\omega t + \frac{2\pi}{3})$ entsteht durch Überlagerung der drei gleichfrequenten Teilschwingungen mit Kreisfrequenz $\omega > 0$:

$$\mathbf{x}_{\mathrm{I}}(t) = \sqrt{2}\sin(\omega t - \frac{\pi}{4})$$

$$\mathbf{x}_{2}(t) = \mathbf{A}\cos(\omega t + \varphi)$$

$$x_3(t) = \sqrt{6}\cos(\omega t + \frac{3\pi}{4})$$

Bestimmen Sie A>0 und $\phi\in\mathbb{R}$ mit Hilfe komplexer Zeiger sowohl zeichnerisch als auch rechnerisch, so dass also gilt: $\mathbf{x}(t)=\mathbf{x}_{\scriptscriptstyle 1}(t)+\mathbf{x}_{\scriptscriptstyle 2}(t)+\mathbf{x}_{\scriptscriptstyle 3}(t)$.

Aufgabe 3 (20 min.)

Für welche Werte $\alpha \in \mathbb{R}$ und $\beta \in \mathbb{R}$ besitzt das folgende lineare Gleichungssystem

$$2x_{1} + x_{2} = 0$$

$$x_{1} + 2x_{2} + x_{3} = 0$$

$$x_{2} + 2x_{3} + x_{4} = 0$$

$$x_{3} + \alpha x_{4} = \beta$$

- a) eine eindeutige Lösung; man gebe diese Lösung an.
- b) mehrere Lösungen; man gebe die allgemeine Lösung an.
- c) keine Lösung?
- d) man bestimme die Determinante der Systemmatrix A.

Wir wünschen Ihnen einen kühlen Kopf und gutes Gelingen!

$$\begin{array}{lll} & \begin{array}{lll} |A \underline{\lambda}| & c \\ |i| & 2 \\ |A| & = \\ |A|$$

 $= \sqrt{2} - 1\sqrt{2} - \frac{1}{2} + \frac{1}{2}1 = \sqrt{2} - \frac{1}{2} + 1\left(\frac{1}{2} - \sqrt{2}\right)$

$$\times 2\cos(\omega t + \frac{2}{3}\pi) = \sqrt{2}\sin(\omega t - \frac{\pi}{4}) + A \cdot \cos(\omega t + 4) + \sqrt{6}\cos(\omega t + \frac{3\pi}{4}\pi)$$

$$\Rightarrow \frac{1}{3}\pi \frac{1}{4}\pi \frac{1}{4}\pi$$

$$\Rightarrow Ae = 2(\cos\frac{2}{3}\pi + i\sin\frac{2}{3}\pi) - \sqrt{2}(\cos\frac{2}{4}\pi - i\sin\frac{2}{4}\pi) - \sqrt{6}(\cos\frac{2}{4}\pi + i\sin\frac{2}{4}\pi)$$

$$Ae^{14} = -1 + 1\sqrt{3} + 1 + 1 + \sqrt{3} - 1\sqrt{3} = \sqrt{3} + 1$$

$$\Rightarrow \boxed{A=2} \qquad \begin{array}{c} \frac{2}{4} & \frac{2}{6} & \frac{2}{6}$$

A2 d) 6

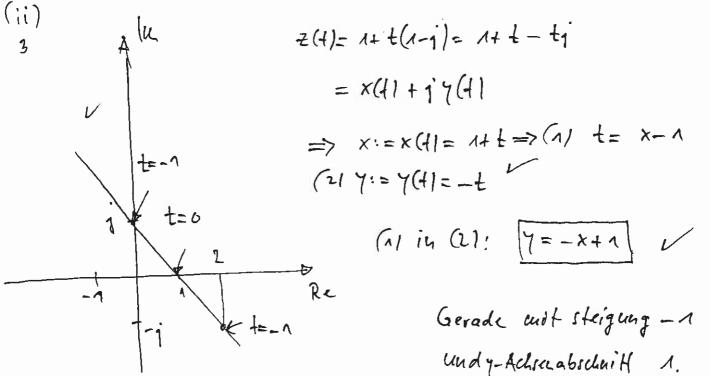
i)
$$z=3+2e \iff |z-3|=2$$
 $\Leftrightarrow (x-3)+7=4 \Leftrightarrow Kreis \ um \ (3(0)) \ mit \ Rodius \ 2$

(i) A lu

$$z(4)=A+t(A-1)=A+t-t_1$$

$$=x(4)+17(4)$$

$$x=x(4)+17(4)$$



e) Ein Ri. Veletor V d. Gerade g durch Pr, Pz lautet: $\vec{V} = \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix} = \vec{P_1}\vec{P_L}$ Ware g zu En parallel (so misste V. n=0, wobei n d: NV d. Ebene Eist. Dies fahrt zu einen Widespruch: - R.P. · Mu = 2(k+2) + 9-2(k+2) + 0 Denn: (ii) Die X-t-Ebrue lautet 7=0 und hat de NV: $\begin{pmatrix} 0 \\ 1 \end{pmatrix} = N_{xz-Ebine}$ En ist parallel the x-2-Eben, were d. NV von En ein Vidfaches von diesem Veletor ist, wan also gict: 2(k+2)=0=> k=-2

2(k+2)=0=> k=-2

AM [23]
a)
$$cor(\vec{p},\vec{q}) = \vec{1} \cdot \vec{q} = -1$$

$$|\vec{p}| =$$

 $\overline{Y} = (4,4,-3)$ $\overline{X} = (1,2,+4)$

a) Eind. Lig.
$$\Leftrightarrow$$
 Rg $A = Rg(A|b) = 4 \Leftrightarrow \angle \pm \frac{3}{4}$

$$\Rightarrow x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_{14} \end{pmatrix} = \frac{\beta}{4\alpha - 3} \begin{pmatrix} -1 \\ 2 \\ -1 \\ 4 \end{pmatrix}$$

b) methere Ligen.
$$(\infty-\text{viele}) \iff \forall = \frac{3}{4} \land \beta = 0$$

$$\Leftrightarrow Rg A = Rg(A15) < 4 \Rightarrow x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \lambda \begin{cases} -1 \\ 2 \\ -3 \\ 4 \end{pmatrix} \bigvee$$

d)
$$\det A = 2 \cdot \frac{3}{2} \cdot \frac{4}{3} (x - \frac{3}{4}) = 4x - 3$$

